5 research outputs found

    Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast

    Full text link
    Tesis por compendioDesde comienzos del siglo XXI, los sistemas de radiodifusi贸n terrestre han sido culpados de un uso ineficiente del espectro asignado. Para aumentar la eficiencia espectral, los organismos de estandarizaci贸n de TV digital comenzaron a desarrollar la evoluci贸n t茅cnica de los sistemas de TDT de primera generaci贸n. Entre otros, uno de los objetivos principales de los sistemas de TDT de pr贸xima generaci贸n (DVB-T2 y ATSC 3.0) es proporcionar simult谩neamente servicios de TV a dispositivos m贸viles y fijos. El principal inconveniente de esta entrega simult谩nea son los diferentes requisitos de cada condici贸n de recepci贸n. Para abordar estas limitaciones, se han considerado diferentes t茅cnicas de multiplexaci贸n. Mientras que DVB-T2 acomete la entrega simult谩nea de los dos servicios mediante TDM, ATSC 3.0 adopt贸 la Multiplexaci贸n por Divisi贸n en Capas (LDM). LDM puede superar a TDM y a FDM al aprovechar la relaci贸n de Protecci贸n de Error Desigual (UEP), ya que ambos servicios, llamados capas, utilizan todos los recursos de frecuencia y tiempo con diferentes niveles de potencia. En el lado del receptor, se distinguen dos implementaciones, de acuerdo con la capa a decodificar. Los receptores m贸viles solo est谩n destinados a obtener la capa superior, conocida como Core Layer (CL). Para no aumentar su complejidad en comparaci贸n con los receptores de capa 煤nica, la capa inferior, conocida como Enhanced Layer (EL), es tratada como un ruido adicional en la decodificaci贸n. Los receptores fijos aumentan su complejidad, ya que deben realizar un proceso de Cancelaci贸n de Interferencia (SIC) sobre la CL para obtener la EL. Para limitar la complejidad adicional de los receptores fijos, las capas de LDM en ATSC 3.0 est谩n configuradas con diferentes capacidades de correcci贸n, pero comparten el resto de bloques de la capa f铆sica, incluido el TIL, el PP, el tama帽o de FFT, y el GI. Esta disertaci贸n investiga tecnolog铆as avanzadas para optimizar el rendimiento de LDM. Primero se propone una optimizaci贸n del proceso de demapeo para las dos capas de LDM. El algoritmo propuesto logra un aumento de capacidad, al tener en cuenta la forma de la EL en el proceso de demapeo de la CL. Sin embargo, el n煤mero de distancias Euclidianas a computar puede aumentar significativamente, conduciendo no solo a receptores fijos m谩s complejos, sino tambi茅n a receptores m贸viles m谩s complejos. A continuaci贸n, se determina la configuraci贸n de piloto ATSC 3.0 m谩s adecuada para LDM. Teniendo en cuenta que las dos capas comparten el mismo PP, surge una contrapartida entre la densidad de pilotos (CL) y la redundancia sobre los datos (EL). A partir de los resultados de rendimiento, se recomienda el uso de un PP no muy denso, ya que ya han sido dise帽ados para hacer frente a ecos largos y altas velocidades. La amplitud piloto 贸ptima depende del estimador de canal en los receptores (ej., se recomienda la amplitud m铆nima para una implementaci贸n Wiener, mientras que la m谩xima para una implementaci贸n FFT). Tambi茅n se investiga la potencial transmisi贸n conjunta de LDM con tres tecnolog铆as avanzadas adoptadas en ATSC 3.0: las tecnolog铆as de agregaci贸n MultiRF, los esquemas de MISO distribuido y los de MIMO colocalizado. Se estudian los potenciales casos de uso, los aspectos de implementaci贸n del transmisor y el receptor, y las ganancias de rendimiento de las configuraciones conjuntas para las dos capas de LDM. Las restricciones adicionales de combinar LDM con las tecnolog铆as avanzadas se consideran admisibles, ya que las mayores demandas ya est谩n contempladas en ATSC 3.0 (ej., una segunda cadena de recepci贸n). Se obtienen ganancias significativas en condiciones de recepci贸n peatonal gracias a la diversidad en frecuencia proporcionada por las tecnolog铆as MultiRF. La conjunci贸n de LDM con esquemas de MISO proporciona ganancias de rendimiento significativas en redes SFN para la capa fija con el esquema de Alamouti.Since the beginning of the 21st century, terrestrial broadcasting systems have been blamed of an inefficient use of the allocated spectrum. To increase the spectral efficiency, digital television Standards Developing Organizations settled to develop the technical evolution of the first-generation DTT systems. Among others, a primary goal of next-generation DTT systems (DVB-T2 and ATSC 3.0) is to simultaneously provide TV services to mobile and fixed devices. The major drawback of this simultaneous delivery is the different requirement of each reception condition. To address these constraints different multiplexing techniques have been considered. While DVB-T2 fulfilled the simultaneous delivery of the two services by TDM, ATSC 3.0 adopted the LDM technology. LDM can outperform TDM and FDM by taking advantage of the UEP ratio, as both services, namely layers, utilize all the frequency and time resources with different power levels. At receiver side, two implementations are distinguished, according to the intended layer. Mobile receivers are only intended to obtain the upper layer, known as CL. In order not to increase their complexity compared to single layer receivers, the lower layer, known as EL is treated as an additional noise on the CL decoding. Fixed receivers, increase their complexity, as they should performed a SIC process on the CL for getting the EL. To limit the additional complexity of fixed receivers, the LDM layers in ATSC 3.0 are configured with different error correction capabilities, but share the rest of physical layer parameters, including the TIL, the PP, the FFT size, and the GI. This dissertation investigates advanced technologies to optimize the LDM performance. A demapping optimization for the two LDM layers is first proposed. A capacity increase is achieved by the proposed algorithm, which takes into account the underlying layer shape in the demapping process. Nevertheless, the number of Euclidean distances to be computed can be significantly increased, contributing to not only more complex fixed receivers, but also more complex mobile receivers. Next, the most suitable ATSC 3.0 pilot configuration for LDM is determined. Considering the two layers share the same PP a trade-off between pilot density (CL) and data overhead (EL) arises. From the performance results, it is recommended the use of a not very dense PP, as they have been already designed to cope with long echoes and high speeds. The optimum pilot amplitude depends on the channel estimator at receivers (e.g. the minimum amplitude is recommended for a Wiener implementation, while the maximum for a FFT implementation). The potential combination of LDM with three advanced technologies that have been adopted in ATSC 3.0 is also investigated: MultiRF technologies, distributed MISO schemes, and co-located MIMO schemes. The potential use cases, the transmitter and receiver implementations, and the performance gains of the joint configurations are studied for the two LDM layers. The additional constraints of combining LDM with the advanced technologies is considered admissible, as the greatest demands (e.g. a second receiving chain) are already contemplated in ATSC 3.0. Significant gains are found for the mobile layer at pedestrian reception conditions thanks to the frequency diversity provided by MultiRF technologies. The conjunction of LDM with distributed MISO schemes provides significant performance gains on SFNs for the fixed layer with Alamouti scheme. Last, considering the complexity in the mobile receivers and the CL performance, the recommended joint configuration is MISO in the CL and MIMO in the EL.Des de comen莽aments del segle XXI, els sistemes de radiodifusi贸 terrestre han sigut culpats d'un 煤s ineficient de l'espectre assignat. Per a augmentar l'efici猫ncia espectral, els organismes d'estandarditzaci贸 de TV digital van comen莽ar a desenvolupar l'evoluci贸 t猫cnica dels sistemes de TDT de primera generaci贸. Entre altres, un dels objectius principals dels sistemes de TDT de pr貌xima generaci贸 (DVB-T2 i el ATSC 3.0) 茅s proporcionar simult脿niament serveis de TV a dispositius m貌bils i fixos. El principal inconvenient d'aquest lliurament simultani s贸n els diferents requisits de cada condici贸 de recepci贸. Per a abordar aquestes limitacions, s'han considerat diferents t猫cniques de multiplexaci贸. Mentre que DVB-T2 escomet el lliurament simultani dels dos serveis mitjan莽ant TDM, ATSC 3.0 va adoptar la Multiplexaci贸 per Divisi贸 en Capes (LDM). LDM pot superar a TDM i a FDM en aprofitar la relaci贸 de Protecci贸 d'Error Desigual (UEP), ja que tots dos serveis, cridats capes, utilitzen tots els recursos de freq眉猫ncia i temps amb diferents nivells de pot猫ncia. En el costat del receptor, es distingeixen dues implementacions, d'acord amb la capa a decodificar. Els receptors m貌bils solament estan destinats a obtenir la capa superior, coneguda com Core Layer (CL). Per a no augmentar la seua complexitat en comparaci贸 amb els receptors de capa 煤nica, la capa inferior, coneguda com Enhanced Layer (EL), 茅s tractada com un soroll addicional en la decodificaci贸. Els receptors fixos augmenten la seua complexitat, ja que han de realitzar un proc茅s de Cancel路laci贸 d'Interfer猫ncia (SIC) sobre la CL per a obtenir l'EL. Per a limitar la complexitat addicional dels receptors fixos, les capes de LDM en ATSC 3.0 estan configurades amb diferents capacitats de correcci贸, per貌 comparteixen la resta de blocs de la capa f铆sica, incl貌s el TIL, el PP, la grand脿ria de FFT i el GI. Aquesta dissertaci贸 investiga tecnologies avan莽ades per a optimitzar el rendiment de LDM. Primer es proposa una optimitzaci贸 del proc茅s de demapeo per a les dues capes de LDM. L'algoritme proposat aconsegueix un augment de capacitat, en tenir en compte la forma de l'EL en el proc茅s de demapeo de la CL. No obstant a莽貌, el nombre de dist脿ncies Euclidianes a computar pot augmentar significativament, conduint NO sols a receptors fixos m茅s complexos, sin贸 tamb茅 a receptors m貌bils m茅s complexos. A continuaci贸, es determina la configuraci贸 de pilot ATSC 3.0 m茅s adequada per a LDM. Tenint en compte que les dues capes comparteixen el mateix PP, es produeix una contrapartida entre la densitat de pilots (CL) i la redund脿ncia sobre les dades (EL). A partir dels resultats de rendiment, es recomana l'煤s d'un PP no gaire dens, ja que ja han sigut dissenyats per a fer front a ecos llargs i altes velocitats. L'amplitud pilot 貌ptima dep猫n de l'estimador de canal en els receptors (ex., es recomana l'amplitud m铆nima per a una implementaci贸 Wiener, mentre que la m脿xima per a una implementaci贸 FFT). Tamb茅 s'investiga la potencial transmissi贸 conjunta de LDM amb tres tecnologies avan莽ades adoptades en ATSC 3.0: les tecnologies d'agregaci贸 de MultiRF, els esquemes de MISO distribu茂t i els de MIMO colocalitzat. S'estudien els potencials casos d'煤s, els principals aspectes d'implementaci贸 del transmissor i el receptor, i els guanys de rendiment de les configuracions conjuntes per a les dues capes de LDM. Les restriccions addicionals de combinar LDM amb les tecnologies avan莽ades es consideren admissibles, ja que les majors demandes ja estan contemplades en ATSC 3.0 (ex., una segona cadena de recepci贸). S'obtenen guanys significatius per a la capa m貌bil en condicions de recepci贸 per als vianants gr脿cies a la diversitat en freq眉猫ncia proporcionada per les tecnologies MultiRF. La conjunci贸 de LDM amb esquemes MISO distribu茂ts proporciona guanys de rendiment significatius en xarxes SFN per a la capa fixa amb l'esquema d'Alamouti.Garro Crevill茅n, E. (2018). Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast [Tesis doctoral no publicada]. Universitat Polit猫cnica de Val猫ncia. https://doi.org/10.4995/Thesis/10251/105559TESISCompendi

    Layered Division Multiplexing With Multi-Radio-Frequency Channel Technologies

    Full text link
    "(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.")The advanced television system committee (ATSC) is to release the next-generation U.S. digital terrestrial television standard, known as ATSC 3.0. Layered division multiplexing (LDM) is one of the new physical layer technologies included in the standard, which enables the efficient provision of mobile and fixed services by superposing two independent signals with different power levels. ATSC 3.0 has also adopted a novel transmission technique known as channel bonding (CB), which splits the data of a service into two sub-streams that are modulated and transmitted over two radio-frequency (RF) channels. This paper investigates the potential use cases, implementation aspects, and performance advantages, for combining LDM with CB and also with the multi-RF channel technology time frequency slicing (TFS) introduced in digital video broadcasting - terrestrial second generation (DVB-T2) (as an informative annex) and digital video broadcasting - next generation handheld (DVB-NGH) which allows distributing the data of a service across two or more RF channels by means of time slicing and frequency hopping.Parts of this paper have been published in the Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Ghent, Belgium, in 2015. This work was supported by the ICT Research and Development Program of MSIP/IITP. [R0101-15-294, Development of Service and Transmission Technology for Convergent Realistic Broadcast.]Garro Crevill茅n, E.; Gimenez Gandia, JJ.; Park, SI.; G贸mez Barquero, D. (2016). Layered Division Multiplexing With Multi-Radio-Frequency Channel Technologies. IEEE Transactions on Broadcasting. 62(2):365-374. doi:10.1109/TBC.2015.2492474S36537462

    Coexistence of digital terrestrial television and next generation cellular networks in the 700 MHz band

    Full text link
    "(c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."With the spectrum liberation obtained by the deployment of digital terrestrial television and the analog TV switch-off, new bands are being assigned to IMT LTE. In the first cellular deployments in the digital dividend at the 800 MHz band, problems emerged due to the interference cellular networks can cause to DTT signals. Possible solutions imply either an inefficient use of the spectrum (increasing the guard band and reducing the number of DTT channels) or a high cost (using anti-LTE filters for DTT receivers). The new spectrum allocated to mobile communications is the 700 MHz band, also known as the second digital dividend. In this new IMT band, the LTE uplink is placed in the lower part of the band. Hence, the ITU-R invited several studies to be performed and reported the results to WRC-15. In this article, we analyze the coexistence problem in the 700 MHz band and evaluate the interference of LTE signals to DTT services. Several coexistence scenarios have been considered, and laboratory tests have been performed to measure interference protection ratios.Fuentes, M.; Garc铆a Pardo, C.; Garro Crevillen, E.; G贸mez Barquero, D.; Cardona Marcet, N. (2014). Coexistence of digital terrestrial television and next generation cellular networks in the 700 MHz band. IEEE Wireless Communications. 21(6):63-69. doi:10.1109/MWC.2014.7000973S636921

    Frequency and Network Planning and Optimization of the Digital Terrestrial Television DVB-T2 Networks in Colombia

    Full text link
    [EN] In December 2011, Colombia updated its national Digital Terrestrial Television (DTT) standard from DVB-T to DVBT2, the second-generation European DTT standard. DVBT2 is the current state-of-the art DTT system in the world, and it brings very significant improvements in terms of capacity, robustness and flexibility compared with any other DTT technology. The iTEAM Research Institute was very involved in the promotion and adoption of DVB-T2 in Colombia. The case of Colombia is unique because it was the first country to deploy DVB-T2 with 6 MHz channelization, and because the digital networks will co-exist with the analogue NTSC network until the analogue switch-off and with digital ISDB-Tb and DVB-T networks in the neighbor countries. Furthermore, DVB-T2 networks will be deployed from scratch without any constraint imposed by existing DVB-T infrastructure. This paper provides an overview of the frequency and network DVB-T2 planning activities performed by the iTEAM Research Institute in cooperation with the Spectrum Regulator of Colombia.This work was partially supported by the Spectrum Regulator of Colombia ANE (Agencia Nacional del Espectro). The authors thank the Spanish companies Ingenia-Telecom and Axi贸n Infraestructuras de Telecomunicaci贸n, partners in some of the projects developed for the ANE.G贸mez Barquero, D.; L贸pez S谩nchez, J.; Martinez Pinzon, G.; Ribadeneira Ram铆rez, JA.; Garro Crevillen, E.; Garc铆a Pardo, C.; Fuentes Muela, M.... (2014). Frequency and Network Planning and Optimization of the Digital Terrestrial Television DVB-T2 Networks in Colombia. Waves. 6:35-49. http://hdl.handle.net/10251/56485S3549

    Estudios de Convivencia de Servicios TDT con Servicios 4G LTW en Bandas UHF

    Full text link
    Because of the digital switchover, digital television has been released part of the radio spectrum formerly used for analog broadcasting for mobile services, specifically for 4G LTE networks. This project has been focused on evaluating the interference caused by LTE transmitters on DTT receivers.Con motivo del apag贸n anal贸gico, la televisi贸n digital ha permitido liberar parte del espectro radioel茅ctrico antes utilizado por la emisi贸n anal贸gica para servicios de telefon铆a m贸vil, concretamente para redes 4G LTE. Este proyecto ha estado enfocado en evaluar las interferencias que pueden provocar transmisores LTE en los receptores de TDT.Garro Crevillen, E. (2013). Estudios de Convivencia de Servicios TDT con Servicios 4G LTW en Bandas UHF. http://hdl.handle.net/10251/37039.Archivo delegad
    corecore